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SUMMARY 

We propose an empirical law for vertical nodal placement in tidal simulations that depends on a single parameter 
p. The influence of dimensionless numbers on the optimal value of p is analysed through a series of numerical 
experiments for an individual vertical and a single value ofp  is found to be adequate for all cases. The proposed 
law can lead to gains in accuracy of over two orders of magnitude relative to a uniform grid and compares 
favourably with non-uniform grids previously used in the litemture. In practical applications the most effective use 
of this law may require each vertical to have a different number of nodes. Criteria for the distribution of the total 
number of nodes among different verticals are also proposed, based on the concept of equalizing errors across the 
domain. The usefulness of the overall approach is demonshated through a two-dimensional laterally averaged 
application to a synthetic estuary. 
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1. INTRODUCTION 

Two general approaches have been used for the horizontal discretization of the flow and transport 
equations in estuarine and coastal models: unstructured (typically finite elements) and structured 
(primarily finite differences) grids. While finite elements allow for far superior flexibility in the 
description of irregular boundaries and in the placement of local refinements, finite difference grids 
lead to simpler and arguably more efficient (in a node-per-node basis) algorithms. 

By contrast, structured grids have been the norm for vertical discretization. Methods using both 
orthogonal *,’ (z-co-ordinate) and curvilinea?” (sigma co-ordinate) grids have been extensively used. 
Sigma co-ordinates are probably the most popular (see review by Cheng and Smith6), offering three 
main advantages relative to z-co-ordinates: (a) a better resolution of shallow areas; (b) a smooth 
representation of the bottom topography; (c) a simpler treatment of the free surface. The major 
disadvantage associated with sigma co-ordinates is the potential for generation of large errors in the 
evaluation of horizontal gradients near steep However, several techniques can be used to 
reduce these errors considerably.’~’’ Moreover, z-co-ordinate models can also suffer from similar 
 problem^.'^ 

Recently we proposed what can be seen as the loose vertical equivalent to horizontal unstructured 
grids.14 Denoted localized sigma co-ordinates (LSCs), this approach combines the main advantages, as 
well as disadvantages, of traditional domain-wide sigma co-ordinates (DWSCs) with a higher 
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flexibility to discretize the vertical direction: the nodal placement is independent for each vertical, so 
local refinements do not carry over to the rest of the domain. 

The concept behind LSCs is simple. As in DWSCs, the height of the water column is linearly 
mapped into a fixed interval. However, LSCs recognize the solution of the internal mode as an 
essentially one-dimensional localized problem rather than dividing the domain into levels. Therefore 
each vertical is discretized independently from the others. Horizontal gradients of depth-dependent 
quantities, which constitute the only direct link between nodes in adjacent verticals, can be computed 
in either Cartesian or sigma co-ordinates by interpolating the necessary quantities at neighbouring 
 vertical^.'^-'^ Interpolations increase slightly the computational costs14 and may make LSCs more 
awkward to implement on some computer architectures. In the examples presented in this paper, these 
interpolations are avoided by considering only barotropic flows and neglecting advection and 
horizontal diffusion. 

The use of unstructured grids in the vertical direction can lead to important computational savings 
relative to the methods currently used. For instance, stratified areas require a fine local discretization” 
which cannot be achieved efficiently using structured grids. Also, one of the trends in ocean modelling 
is to simulate increasingly larger domains, including simultaneously both deep ocean areas and shallow 
coastal seas.’* Clearly, different areas will typically require a different vertical resolution. In deep 
areas, friction is unimportant and a coarse resolution is sufficient near the bottom as long as a slip 
bottom boundary condition is used; in contrast, a good representation of the bottom boundary layer is 
needed in shallow areas. 

Still, one cannot take full advantage of the flexibility of LSCs without appropriate criteria to 
discretize the vertical dimension. The primary purpose of this paper is to develop a criterion for 
vertical nodal placement. Because a very large number of parameters can potentially influence an 
optimal discretization, this study is restricted to unstratified tidal flows. In spite of the relative 
simplicity of these flows, the criterion proposed herein can greatly reduce the errors in tidal simulations 
relative to vertically uniform grids and provide usefid guidelines for the simulation of more complex 
flows. 

The criterion developed here addresses both the nodal distribution in a single vertical and the 
horizontal distribution of the total number of nodes among different verticals. This criterion can be 
applied on three different levels of complexity. While the two more complex forms lead to a varying 
number of nodes per vertical (thus requiring the use of LSCs), the simplest form can also be applied to 
DWSC models. 

Previous work on vertical discretization strategies is surprisingly scarce. NoyeI9 proposed the use of 
a ‘kappa grid’ which allows a higher resolution near the bottom. Errors relative to a uniform grid are 
significantly reduced while maintaining second-order accuracy in Aaz’ However, optimal kappa grids 
vary strongly with frictional parameters, making the method difficult to use in practice. Davies” 
compared four approaches to discretize the vertical (a kappa grid, logarithmic and log-linear grids, and 
a spectral method) and found that the spectral method and the log-linear grid provide the fastest 
convergence. However, either one or two parameters need to be specified in all four of these methods 
and no criteria for their specification were proposed. The method presented herein compares 
favourably with the logarithmic and log-linear grids. 

This paper includes five sections in addition to the introduction. Section 2 describes the model used 
in the numerical tests and introduces the relevant dimensionless numbers. Section 3 introduces two 
types of grids and establishes the optimal distribution of the nodes in a single vertical based on the 
effect of the dimensionless numbers. Section 4 addresses the distribution of the total number of nodes 
among the different verticals. Section 5 presents an application to a two-dimensional, laterally 
averaged synthetic estuary to illustrate the gains in accuracy achieved with the optimized grids. Finally, 
Section 6 presents a summary and some concluding remarks. 
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2. NUMERICAL FORMULATION AND DIMENSIONLESS NUMBERS 
The propagation of tides is generally modelled with the shallow water equations, which describe the 
conservation of mass and momentum under the conventional hydrostatic pressure and Boussinesq 
approximations. Here we W e r  neglect advective accelerations and rotation effects in order to 
decouple the two horizontal momentum equations. Advective accelerations can be neglected because 
they are usually small compared with the gravity term, while rotation was shown to have little effect on 
the convergence of several numerical methods to solve the vertical structure of tidal  flow^.^' With these 
simplifications each momentum equation can be written as 

-=-g-+- all 3 3  A,- 
at ax &( :) 

where x and z are the Cartesian coordinates, t is time, u is the horizontal velocity, q is the elevation of 
the water surface, g is the gravitational acceleration and A, is the vertical eddy viscosity. 

Most three-dimensional shallow water numerical models decouple the treatment of the horizontal 
and vertical dimension in an explicit recognition of the different space and time scales involved. The 
decoupling is usually accomplished by the introduction of external and internal modes. Loosely stated, 
the external mode determines the elevations (and in some cases the depth-averaged velocities) while 
the internal mode resolves the vertical structure of the flow. 

Consistent with the objectives of this paper, we will concentrate here on the internal mode. To isolate 
this model, we assume an elevation field of the form 

where A, T and 
be written as 

are the wave amplitude, period and phase respectively. The gravity forcing can then 

or, after rearrangement, 

where we introduce a fieestream velocity U and a phase 4’ defined as 

u =“J[ 2n (32+(A!9)2] ,  
4’=m-’p/$). 

( 5 )  

Physically, the freestseam velocity represents the velocity amplitude in the absence of friction. In 
deep waters, where the effect of dissipation is restricted to the bottom layer, U represents closely the 
actual velocity amplitude near the surface. 

Equation (1) is solved assuming zero stress at the surface and using a quadratic bottom slip 
condition: 

Here cd is a dimensionless friction coefficient, h is the depth and the subscript ‘b’ represents values at 
the bottom. A rigid-lid approximation is used for simplicity. 



818 A. B. FORTUNATO AND A. M. BAPTISTA 

In order to reduce the number of physical parameters involved, (1) and (7) are written in 

v = u/u, z = t / T ,  Q = z / h ,  E = A, /hU,  r = UT/h .  (8) 

dimensionless form. Dimensionless quantities are defined as 

The momentum equation becomes 
av 

and the boundary conditions become 

(9) 

Examination of the above equations suggests that three dimensionless numbers determine the 
behaviour of the solution: r, cd and E. While r and Cd are relatively simple to determine, E can vary 
both in time and along the vertical. For simplicity, E is assumed to be time-independent, an assumption 
that will be relaxed later. Furthermore, a simple (yet realistic) vertical profile is used to keep the 
number of parameters to a minimum: 

where Eb and E, represent the dimensionless eddy viscosities at the bottom and in the bulk of the water 
column respectively. This form of eddy viscosity profile is supported by observations2’ and has been 
used by a number of modeller~.’.~~ 

The numerical solution of (9) and (10) forms the basis of our vertical model. The momentum 
equation is discretized in space with linear finite elements. All terms are centred in time except the 
viscosity term, which is treated implicitly for stability. 

3. NODAL DISTRIBUTION IN A SINGLE VERTICAL 

The optimization of the nodal distribution for a single vertical is accomplished in four steps. First we 
define physically relevant ranges for the dimensionless numbers introduced in the previous section (r, 
c d ,  Eb and Ec). Then we select a general expression for nodal placement, controlled by a single 
parameter p for simplicity. Next, several experiments are carried out to study the effect of each 
dimensionless number on the optimal value ofp. Finally the results from the optimal grid are compared 
against those obtained with previously proposed vertical discretizations.2’ 

3.1. Dimensionless numbers 

The freestream velocity scales as U a AJ(g /h)  (equation (5) )  and r can be scaled as 
r a ATJ(g/h3) .  Assuming ranges of T, h and A of 104-105 s, 1-1000 m and 0-1-10 m respectively, 
r varies between lo-’ and lo’. (The combination A = 10 m, h = 1 m was not considered realistic.) 
Values of the friction coefficient c d  used in the literature vary between 0.0025 (minimum recommended 
by Blumberg and Mello?) and 0.05 (as an exireme case, Walters’ uses up to 0.07 in Delaware Bay). 
The dimensionless bottom eddy viscosity scales as Eb a rczoJ(ITb(p)/hU a rczoJcf/h, where K is the 
von Khrmin constant, zo is the roughness length, Zb is the bottom friction and cf is a dimensionless 
friction coefficient for depth-averaged models. Using values of zo between 0.00 1 and 0.1 m and values 
of cf between lW3 and 5 x suggests a range of Eb between lo-* and lop3. Finally, Davies and 
A l d ~ i d g e ~ ~  suggest E, = O.O025ii/U, where u represents the depth-averaged velocity. We will therefore 
take E, between and 
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3.2. krtical grih 

The first expression (‘grid a’) was originally proposed for baroclinic flows:’ 
Two expressions for nodal placement which allow a finer grid spacing near the bottom are studied. 

where n is the number of nodes and p determines the degree of near-bottom resolution. A uniform grid 
in the adomain corresponds top  = 1 and decreasing (increasing) values ofp  lead to increasingly h e r  
grids near the bottom (surface). The second expression (‘grid fly) is given by 

1 IP 
ai = (E) -1, i =  1 ,..., n. 

Grid f l  represents an adjustment introduced in this work to better reflect the physics of tidal flows. 
The variation in vertical profiles of velocity in tidal flows is very rapid near the bottom and decreases 
upwards. In order to obtain accurate results efficiently, the vertical grid spacing should vary in a similar 
manner. As a first-order approximation the vertical grid spacing is given by the derivatives of the 
continuous forms of (1 2) and (1 3) for a and fl respectively: 

1 1 - x  Ilp-1 
b’(x) = - - 

p 0 ’  1 - n  (14) 

where x E [ I ,  n] and p E 10, I[. The function 6’ is parabolic and can therefore represent a typical 
velocity profile much better than d which is hyperbolic. 

The difference between grids a and f l  is illustrated in Figure 1. In grid a the reduction in spatial 
resolution near the bottom is slower than the corresponding increase in resolution near the surface, 
while the reverse occurs with formulation fl. As a result, properly resolving the bottom layer with grid 
a can lead to too coarse a resolution near the surface, a problem that grid /I avoids. Relative to the 
logarithmic and log-linear grids proposed by Davies:’ both the a and f l  grids have two convenient 
advantages: they include the uniform grid as a particular case and the first node ( i=  1) is naturally 
placed at the bottom. Although the log-linear and f l  grids appear very similar on the scale shown in 
Figure 1, the f l  grid is somewhat coarser near the bottom. 

T L 
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a 

Figure 1. Examples of 10-node a (p = 0.03) and j (p = 0.25) grids for 10 m depth. Logarithmic and log-linear grids” BTC also 
included for comparison 
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The performance of grids a and is compared using the default values of the dimensionless 
numbers (Table I). A dimensionless time step of is used in all simulations. The model is run for 
10 tidal cycles and the time series of velocity at each node from the last cycle are harmonically 
analysed to extract the amplitudes and phases of the two relevant dimensionless frequencies F1 (the 
forcing frequency) and F3 (the third harmonic, generated by non-linear friction). Results are compared 
with those obtained using a very fine reference grid with lo4 nodes and a time step of We chose a 
B grid with p = 0-6 as reference, because uniform grids did not provide enough resolution near the 
bottom even for as many as lo4 nodes. The accuracy of the reference grid was verified by running one 
of the tests with a 105-node grid and comparing the results. L2-norms of amplitudes and phases are 
computed for each frequency as 

where 8 represents a generic variable, the subscript r represents either amplitudes or phases and the 
tilde stands for the reference solution. Note that only relative amplitude errors can be computed, since 
U is not known. 

Amplitude and phase errors for Test 1 are shown in Figure 2 as a function of p for both grid types. 
Grid B is much better than grid a: not only is the optimal value ofp, popt, only weakly dependent on the 
number of nodes, but errors are much smaller. The weak dependence of popt on the number of nodes 
will prove very convenient to establish criteria for node placement. Because of the need to resolve the 
bottom layer properly, popt for the a grid tends to be very small, resulting in grids that are much too 
coarse in most of the water column (e.g. n = 30 andp = 0-05 lead to ACT = 0.845 at the surface). This is 
similar to the behaviour reported by Davies2' for the kappa grid and explains the poorer accuracy 
relative to B grids. Grid a is therefore abandoned hereafter. 

Test 1 illustrates the importance of using non-uniform grids. Not only are the errors with regular 
grids very large (p = 1 in Figure 2), but the convergence of the solutions is slow relative to an 
optimized B grid. In particular, insufficient resolution near the bottom can lead to a serious 
underprediction of velocities in the entire water column (Figure 3). 

The results for the B grid (Figure 2) also suggest that popt is the same for both F1 and F3 and for both 
amplitudes and phases. We will take advantage of these two properties in the discussion of the 
remaining 1D tests, where we will only show results for the amplitudes of the primary constituents. 

We note, however, that the independence of popt from the frequency does not necessarily extend to 
more complex conditions, including higher dimensions. Indeed, we believe that this independence 
results in our 1D tests from two reasons. First, F3 is generated by F1,  so errors in the primary 
constituent will be reflected in the overtides. Secondly, profiles for both F1 and F3 have very large 

Table I. Parameten used in tests 1-5. Default values are shown in bold 
~~ 

Test cd 

1 10' 0.005 l o r 5  0.0025 
2 10-1, loo, 10' 0.005 l o r 5  04025 

3 10' 0.0225, 0.005, 1 0 - ~  0.0025 

04025 

lo2, lo3, lo4, lo5 

0.001, 0.05 
4 10' 0.005 lo-', 

5 10' 0.005 lor5 0.001, 
1 0 - ~  

04025, 0.01 
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Figure 2. 

gradients near the bottom, although for different reasons: the primary constituent decreases sharply 
near this boundary owing to friction, while the non-linear constituent is generated at the bottom and 
diffuses slowly upwards. In more realistic simulations, F3 may have smaller gradients near the bottom, 
both because it can be forced directly by gravity and because it is also generated in the water column 
by the interaction between velocity and timedependent eddy viscosity.25 Under these circumstances, 
popt may depend more strongly on the specific constituent than implied by our tests. 

0.0 

-0.2 

-0.4 
m 
.- & 
UJ -0.6 

-0.8 

-1 .o 
0.3 0.4 0.5 0.6 

velocity amplltude [-] 
Figure 3. Test I .  Profiles of F, velocity amplitude obtained with different 30-node grids. The a and B grids are the opbmal for this 

test (D cquals 0.05 and 0.25 e v e l y )  
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3.3. Optimization 

Tests 2-5 examine the effect of the dimensionless numbers r, cd, Eb and E, onp-. In each test case 
a number is varied while the others are held constant (Table I). The vertical profiles of the F1 amplitude 
(Figure 4) suggest that the various dimensionless numbers have very different effects on p- 

1. As r increases, the bottom boundary layer includes a growing portion of the water column, 
which should increase pap,. Still, significant shear remains near the bottom even for the larger 
values of r, so papt should remain small. 

2. The friction coefficient cd controls the magnitude of the velocities but has very little effect on the 
shape of the velocity profile and therefore should not affect pap, significantly. 

3. Increasing E,, has two effects. First, it reduces velocities just llke decreasing cd does (see equation 
(1 0)). Secondly, it reduces shear at the bottom by making the eddy viscosity more uniform over 
depth. This second effect will make pop, increase with Eb, as fewer nodes will be needed to 
resolve the bottom layer. 

4. Reducing E, also leads to a more uniform eddy viscosity and thus to a largerp,,,. 

This qualitative analysis is supported by the results of numerical experimentation. Indeed, 
concentrating on the variation in the &-norms of velocity amplitudes withp, we observe the following. 

1. When r increases, popt rises very mildly (Figure 5) .  Still, the error curves are almost flat in a 
large region around pop, (around 0.15-0.3), so the effect of r on papt is secondary. The major 
consequence of increasing r is the error growth: the minimum L2-norrn grows by about two 
orders of magnitude when goes from lo-' to lo4. For r = los the errors decrease, possibly 

0.0 

4.2 

4.4 

-0.6 

-0.0 

-1 .o 

0.0 0.4 1 2  

vekcity amplitudes r-1 
Figure 4. Tests 2-5. Velocity amplitudes (reference simulations) 
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2. 

3. 

4. 

In 

because friction becomes a dominant process and the dimensionless velocities decrease by 
almost an order of magnitude (Figure 4). 
The effect of cd on the errors is vety mild (Figure 6). The L2-norms decrease slightly with cd 
owing to the reduction in the velocity, but popt remains unchanged. 
The bottom dimensionless eddy viscosity has a dramatic impact on the L2-nom behaviour 
(Figure 7), just as it had on the velocity profiles. The value ofp,, tends to increase with Eb owing 
to a reduction in shear. However, the main effect of the loss of vertical structure of the flow is the 
flattening of the &-norm curves. As an example, for Eb= and n = 30 the difference 
between the maximum and minimum L2-n0rms is less than 20 per cent. Therefore using a small 
value o f p  for large &, will not affect the errors significantly. 
E, has only a minor effect on the error curves, perhaps owing to the small range of variation in 
this number (Figure 8). Again these curves tend to flatten as E, approaches &, but popt remains 
mostly unchanged. 

general, tests 2-5 suggest that a single value of pop, (around 0 . 2 4 3 )  may be retained. Even 
though it seems possible to determine a relationship between popt and the four dimensionless numbers 
using some kind of optimization technique, eventual gains in accuracy should be marginal. 
Furthermore, in practical applications with complex turbulence models the determination of Eb and E, 
is difficult, if at all possible. Last but not least, DWSC models require a constant pWt. Therefore we 
suggest 0.25 as an appropriate value forpop,. This value will be used from here on. 

While pop, is fairly independent from the controlling dimensionless numbers, one must realize that 
actual errors are not. Indeed, the L2-norms in tests 2-5 show a sigmficant dependence on r (Figure 5) 

1 oJ 

z lo4 

3 
1 lo" 

10' 

10" 

10' 

I I 

0.1 

P 1-1 

Figure 5. Test 2. Influence of r on p,, for thrw different numbers n of nodes 
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0.1 1 .o 
1 0" 

c 1 

1 1 
0.1 1 .o 

P I-1 
Figure 6. Test 3. Influence of cd on popt for three different numbers n of nodes 
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-4  - -7 
-6 - -5 
- 4  - -3 
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Figure 7. Test 4. Influence of Eb on pw for three different numbers n of nodes 
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P I-] 
Figure 8. Test 5 .  Influence of E, on p,, for three different numbers n of nodes 

and, to a lesser extent, on Eb (Figure 7); only the dependence on cd (Figure 6) and E, (Figure 8) is 
weak. 

3.4. Ven3cation 

In test 6 we repeat a 1D experiment reported by Davies.21 Our purpose is twofold. First, the 
optimized /? grid (p = 0.25) is compared against previously available grids. Secondly, its performance 
is assessed for conditions different from the ones for which it was derived. Namely, a no-slip condition 
is used at the bottom and the eddy viscosity varies in time: 

where (eb, e,, Z) =(O.OoOl, 0-1, 0.09001) and U is the depth-averaged velocity. The freestream 
velocity is 1 m s-' and the wave period 12 h (S2 tide). 

Velocity amplitudes and phases at selected points in the vertical were compared with results from the 
reference grid (Table 11). Grid /3 with 30 nodes and the logarithmic and log-linear grids with 60 nodes 
have a similar accuracy. For the same number of nodes the results from grid /3 are clearly better than 
those from both the logarithmic and log-linear grids. Grid /3 therefore represents an improvement over 
other available discretization approaches. 

Results also suggest that /3 grids and the optimization criterion derived in the previous section are 
robust (or at least lead to accurate numerical solutions) beyond the original conditions of friction 
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Table 11. Test 6. Results from reference grid and differences between results from various test grids and reference 
grid. Velocity amplitudes are in m e w  per second; phases (in parentheses) are in degrees. Results for logarithmic 

and log-linear grids are from Reference 21 

Reference Log-linear Logarithmic B B B 
(30 nodes) (60 nodes) Sigma (1 O4 nodes) (60 nodes) (60 nodes) (10 nodes) 

-0-995 
-0-99 
-0.9 
-0.75 
-0.5 

-0.995 
-0.99 
-0.9 
-0.75 
-0.5 

-0.995 
-0.99 
-0.9 
-0.75 
-0.5 

-0.995 
-0.99 
-0.9 
-0.75 
-0.5 

0.215 (211) 
0.259 (21 1) 
0.402 (2 13) 
0.453 (214) 
0.502 (215) 

0.026 (121) 
0.031 (124) 
0.049 (136) 
0.055 (143) 
0.062 (150) 

0.554 (244) 
0.654 (246) 
0.928 (256) 
0.991 (261) 
1.023 (267) 

0.070 (218) 
0-069 (226) 
0-036 (278) 
0.023 (3 19) 
0.013 (13) 

-0-019 (-2) 
-0.018 (-2) 
-0.012 (-1) 
-0.010 (-1) 
-0.008 (-1) 

-0402 (-8) 
-0.001 (-8) 

0.001 (-7) 
0.003 (-7) 
0.004 (- 8) 

-0.007 (-1) 
-0.006 (0) 
-0.003 (0) 
-0402 (0) 
-0.002 (-1) 

0.001 (0) 
0.001 (-1) 
0-OOO (-1) 

-0-001 (0) 
0.001 ( 5 )  

S2, h= 10 m 
0-008 (0) -0.040 (-2) 
0.009 (0) -0.038 (-2) 
0.015 (0) -0.030 (-2) 
0.016 (0) -0.029 (-2) 
0.015 (0) -0.026 (-1) 

s6. h =  10 m 
0.OOO (0) 

0.002 (0) -0.001 (-8) 

0.005 (-2) 0.000 (-6) 

-0.003 (- 1 1) 
0.001 (0) -0.002 (-10) 

0.004 (-1) -0.001 (-7) 

Sz, h =  100 m 
-0.011 (0) -0.065 (-4) 
-0.011 (0) -0.048 (-3) 
-0.005 (1) -0.013 (-1) 
-0.002 (1) -0.009 (-1) 
-0.001 (0) -0-004 (-1) 

s6, h =  100 m 
O~OOO (-9) 0-003 (-4) 

-0401 (-8) 0~004 (-3) 
-0.003 (-6) 0.005 (-2) 
-0-003 (0) 0.004 (-3) 

0.OOO (32) 0.004 (1) 

-0.007 (-1) 
-0.007 (0) 
-0.009 (0) 
-0409 (0) 
-0.009 (0) 

0-000 (-3) 
0.001 (-3) 
0.000 (-2) 
0.001 (-3) 
0.000 (-2) 

-0.008 (0) 
-0.005 (0) 
-0.004 (0) 
-0.003 (0) 
-0.003 (-1) 

0.001 (0) 
0.001 (0) 
0-OOO (1) 
o.oO0 (1) 
0.001 (3) 

- o m 4  (0) 
-0.004 (0) 
-0.006 (0) 
-0.007 (0) 
-0.008 (0) 

-0.001 (-2) 
0~001 (-2) 
0.000 (-1) 
0.001 (-2) 
0.OOO (-2) 

-04)02 (0) 
-0~001 (0) 
-0.002 (1) 
-0.002 (0) 
-0-003 (0) 

0.001 ( I )  
0.001 (1) 

-0.001 (1) 
-0.001 (1) 

0.000 (3) 

parametrization. Experiments were repeated with p = 0.2 and 0.3. The results were very similar, further 
suggesting that 0.25 is an appropriate value for popt even for time-dependent eddy viscosity profiles. 

4. HORIZONTAL NODAL DISTRIBUTION 

We now address the issue of distributing among verticals the total number of nodes available for the 
domain. Within DWSC formulations this problem is non-existent as all verticals must have the same 
number of nodes. However, LSC formulations allow more nodes to be placed in the verticals where 
finer resolution is necessary for accuracy reasons. 

We have shown earlier that Lz(u) depends very significantly on r and less significantly on the other 
controlling dimensionless numbers. r is also fairly straightforward to evaluate. It is therefore both 
reasonable and convenient to argue that criteria to guide the distribution of the number of nodes among 
verticals should account for the spatial distribution of r. The difficulty is to define a relationship 
between n and r that leads to optimal accutacy within a chosen constraint (e.g. a certain total number 
of nodes in the entire domain or a certain maximum error). 

A possible approach, which we will explore below, is to assume that errors are exclusively a function 
of n and r and look for a distribution of nodes that keeps errors constant with regard to these two 
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parameters, i.e. 

dlogO = ( L d l o g O  a log r ) d l o g r +  (&dlogO)dlogn. 

where 0 denotes an error measure. Only error measures that display the functional dependence 
identified above for Lz(u) should be retained. An example that will be used in the next section is 

L,(u) = UL,(u) = ELz(,). 
T 

From (1 7) we can now derive the desired relationship between n and r as 

d log n 
d log l- 

a l og8  

a l o g o ’  

a log r 

a log n 
For this relationship to be of any practical significance, however, we need to be able to quantify the 

right-hand side (RHS). This is non-trivial. While it can be argued that d log Q/d log n is approximately 
a constant (e.g. see Figure 9 for 0 = Lz(u) linked to the order of accuracy of the numerical solution 
method, the behaviour of d log O/d log r is unknown u priori, is likely very sensitive to the choice of 
0 and may be impossible to characterize even experimentally. 

It is, however, reasonable to assume a functional form for the RHS of (19) based on ‘best available 
information’, construct the grid and evaluate errors a posteriori to assess how well (17) is observed. 
We will experiment with this concept in the next section, making the simple assumption that the RHS 
is a constant (based on Figure 9 for 0 = Lz(u)) and rewriting (1 9)  as 

where n- and n- are user-specified maximum and minimum numbers of nodes per vertical and 
rmpx and rmin are maximum and minimum values of r in the domain. The choice of and nmpx 
dictates the value of dlog0/dlogr,  which is convenient h m  the user viewpoint but does not 
necessarily represent the true behaviour of this tenn. 

The use of (20) requires that r, which is not known a priori, be estimated. Three levels of 
decreasing complexity are considered here for the estimation of r, all based on the combination of ( 5 )  
and (8). If the amplitudes and phases of the main tidal constituent are known (e.g. from a depth- 

-1 

-5 ’ I 
0.5 1 .a 1.5 2.0 

ko (n) 
Figure 9. Variation in with n and r. Default values of cd. Eb and E, were used (Table I) 
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averaged simulation), r can be evaluated as (level 3) 

The gradient operator is used here because we are interested in the maximum value of r in each 
vertical. 

A simpler alternative (level 2), which does not require a preliminary run, is to neglect amplitude 
variations in the domain and estimate r as 

r A T J ( g / h 3 ) .  (22) 

In this case, only depth effects are considered on the variation in r. While these effects are generally 
dominant in deep waters, they can be secondary in estuarine conditions (e.g. relative to lateral 
constraints). 

altogether, leading to a constant number of nodes 
per vertical. This level is the only one that can be applied with DWSC models. 

Finally (level l), we can ignore the variations in 

The performance of each level is illustrated in the next section. 

5. APPLICATION 

The criteria and concepts developed in Sections 3 and 4 are now applied in the context of a synthetic 
but relatively complex estuary. Our primary objective is to evaluate whether the overall approach is 
usehl beyond the very narrow limits of the adopted simplifying assumptions. For this purpose we 
choose a case where the rigid lid approximation does not apply, we use a time-dependent eddy 
viscosity and we solve both the internal and external modes. 

The application consists of a tidal wave propagating from deep into shallow waters. The domain 
(Figure 10) schematically represents a shallow embayment connected by a narrow mouth to a 
continental shelf and continental slope. A two-dimensional, laterally averaged model, RITAzWz6 is used 
to make r vary owing to both topographic and geometric effects. RITAzv solves the external mode 
with the generalized wave continuity equation” using linear finite elements. The internal mode 
equations are discretized as described in Section 2. 

A time-dependent eddy viscosity parametrization proposed by Davies and Lawrence” is used. In the 
upper 80 per cent of the water column the eddy viscosity coefficient is given by 

A, = KliilA, (23) 

where tj is the depth-averaged velocity, K is a dimensionless coefficient taken as 0.0025 and the depth 
of the bottom boundary layer, A, is computed as 

A = min(h, 2oooJ(l~b~/p))* (24) 

Avb = ma(KzO%/(lTbl/P)* (25) 
where p is the molecular viscosity of water m2 s-l). The friction coefficient c d  is set to 0.01. 
Four grids were built (Figure 1 l), all using the same horizontal nodal spacing (Ax = 1000 m) but 

each having a different vertical discretization: GO is uniform, while G 1 4 3  are /3 grids and correspond 
respectively to levels 1-3 of the criterion discussed in the previous section. The total number of nodes 
is roughly the same for all grids, but their distribution varies: GO and G1 have 10 nodes per vertical, 
while in G2 and G3 n varies according to (20), with r computed with (22) and (21) respectively 
(Figure 12). For the last two grids we set n- = 5 ,  which leads to n- = 15 for G2 and n- = 24 for 

In the bottom 20 per cent of the water column, A, decreases linearly to 
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Figure 10. Domain for synthetic application 

G3. To build G3, a preliminary depth- averaged simulation was performed for a single constituent (S2) 

and the resulting amplitudes and phases were used to evaluate r (Figure 13). 
The comparison between the four grids implicitly assumes similar costs, i.e. a CPU time for the 

internal mode directly related to the number of nodes. This assumption is valid since the internal mode 
matrices are tridiagonal, requiring only q n )  operations to invert.29 

The model is forced at the open boundary with S2 (T= 12 h) and Sl (T= 24 h) waves with 
amplitudes of 1 and 0.5 m respectively. All non-linear terms are included, except advective 
accelerations. The model is run for 10 S1 tidal cycles in depth-averaged mode plus five cycles in 2D 
mode. The time step is 60 s. Results from the last cycle are harmonically analysed at regularly spaced 
verticals, where the L2-n0rms of the velocity amplitudes, L2(uA), are evaluated. The reference grid has 
the same horizontal resolution as the test grids and a B grid with 60 nodes per vertical. The time step of 
the reference simulation is 30 s. 

Figure 14 shows L2(uA) along the channel for representative constituents (SO, S1, S2 and S,). Results 
for other constituents (S3, S4 and S5) display similar trends and are not shown here. 

For GO, errors typically present a maximum in the channel (e.g. 0.1 m s-l for S2) and are smallest in 
deep water (2 x lo-’ m s-l for the same constituent). The error peak should be attributed both to 
larger velocities and to a rapid change in the wave amplitudes and phases (Figure 13). This change in 
wave characteristics corresponds to a maximum in the value of r, which, as shown in the 1D tests, 
leads to the largest errors. 

The use of grid G1 dramatically improves the results, with L2-nonns decreasing almost Uniformly 
for all frequencies by a factor of 10 (Figure 14). Still, the difference between maximum and minimum 
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distance from dosed end [m] 

Figure 1 I .  Grids used in application 
c, 

errors persists, indicating a relative over-refinement in deep water. This difference suggests that LSCs 
can further improve the overall accuracy. 

The errors for grid G2 decrease in the estuary and increase in the continental slope, because this grid 
concentrates more nodes in shallow water. As a result, the errors-are more uniform than those obtained 
with G1. However, not enough resolution is provided in the channel, because G2 ignores geometry 
effects on r, and the already small errors observed with G1 near the closed boundary are further 
decreased. As discussed in the previous section, level 2 of the criterion is not well-suited for estuarine 
applications, because lateral constraints are not accounted for. 

25 I , 1 

5 
0 20000 40000 60000 

distance from dosed end [m] 

Figure 12. Number of nodes per vertical. Total numbers of nodes are 7 10 for GO and GI, 7 1 1 for G2 and 703 for G3 
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Figure 13. Sz characteristics: r and elevation amplitudes and phases (ID simulation) 

Grid G3 leads to the best results. Relative to G1, it typically reduces the maximum, mean and 
standard deviation of the L2-norms by a factor of three to six. Inside the estuary the errors are similar to 
G2's, even though G2 has more modes in this area; in the channel, G3 leads to better results than G2. 
As a result, the L2-nonns for G3 are the smallest and the most uniform. 

We note (Figure 15) that logL2(u) varies approximately linearly with log r, as assumed in our 
discussion of (19). However, the value of the slope inherently assumed in (20) with n- = 5 and 
nmvr = 24 is 0.13, against an observed slope of 0.61 (Figure 15). Our interpretation is that we could 
make L2(u) more uniform in G3 by adjusting n- in order to obtain a larger imposed slope. 

It is also interesting to observe the variation in 10gL2(u) with log r (Figure 15). For this error 
measure the assumption of a linear variation breaks down. Coincidentally (results not shown), mean 
L2(u) results are not significantly better for grids G2 and G3 than for grid G1. Our interpretation is that 
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Figure 15. Linear regression for logL2(uA) (slope 0.09, correlation coefficient 0.62) and logL,(u,) (slope 0.61, correlation 
coefficient 0.97) versus log r for grid GI 

to optimize the distribution of L2(v) in the domain, we would need to use in (20) a higher-order 
function to describe the dependence of logL,(v) on log r. 

The choice of the error norm that we want to equalize over the domain is somewhat ambiguous and 
will affect the outcome. Norms based on absolute errors can lead to large erroneous fluxes in deep 
waters, which can be amplified in shallow waters. Norms based on relative errors can be overly 
stringent in deep waters, leading to errors far below the detection limits of current instruments. Our 
choices in this paper were pragmatic: in the 1 D tests, only relative errors (Lz(v)) could be computed; in 
the 2D application, absolute errors (L2(u)) led to overall best results. 

6. FINAL CONSIDERATIONS 

This paper addressed the vertical discretization in barotropic tidal models. Criteria for both the nodal 
distribution within a given vertical and the horizontal distribution of the total number of nodes were 
developed and showed promising results in a synthetic application. 

Our analysis demonstrated the strong dependence of errors on local flow properties. An efficient 
vertical discretization should take those properties into account, which is not possible with either 
DWSCs or z-co-ordinates. Thanks to their flexibility, LSCs appear therefore to be a strong alternative 
to the previous methods. 

The usefulness of LSCs should extend well beyond the cases explored in this paper. For instance, a 
method recently developed, in which the momentum equations are solved for Reynold stresses rather 
than ve lo~i t ies ,~~ can also benefit highly from LSCs. Numerical experiments with a barotropic tidal 
model showed that the number of nodes per vertical needed to achieve a 1 per cent error in the bottom 
friction varied from two to 52, depending on the physical pararneter~.~' Clearly, using the same number 
of vertical nodes throughout the domain will lead to a large errors and/or over-refinements. 

The degree of refinement adequate for a given vertical was shown to depend on a dimensionless 
number r which characterizes local changes in wave properties. This number may also prove useful to 
derive criteria for the horizontal discretization of tidal models. Indeed, the usual criterion for horizontal 
discretization based on the dimensionless wavelength is inadequate in areas of rapid changes in wave 
properties owing to its inability to take into account the two-dimensional structure of the flow and the 
rate of change in wavelength.32p33 The number I-, based on horizontal gradients of the wave amplitude 
and phase, may provide a good indication as to where horizontal resolution is most needed. 
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This paper constitutes only a first step towards the development of solid guidelines to discretize the 
vertical dimension in surface water models and certainly leaves many questions unanswered. Out of 
necessity, several simplifying assumptions were made that may eventually have to be revisited. 
Important open questions include 

(i) the dependence of popt on the chosen turbulence closure scheme 
(ii) the extension of the proposed criteria to other types of vertical grids 
(iii) the validity of the proposed criteria in 3D barotropic flows 
(iv) the implications of stratification on the choice of grid type and on the development of 

optimization criteria. 
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